Algorithms for Stochastic Games

Hugo Gimbert, CNRS, LaBRI, Bordeaux

March 3, 2009

Algorithms and Games

Solving Simple Stochastic Games

Solving Stochastic Games

Solving Stochastic Games with Signals

Conclusion

Algorithms and Games

Computable functions

- Computability and algorithms.

Computable functions

- Computability and algorithms.
- Definition: a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable if it is computable by a Turing machine. Equivalent to Pascal programs which terminate. Alphabet $\{0,1\}$ or Σ finite.

Computable functions

- Computability and algorithms.
- Definition: a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable if it is computable by a Turing machine. Equivalent to Pascal programs which terminate. Alphabet $\{0,1\}$ or Σ finite.
- Finitely many instructions. Unlimited amount of memory. Computation in finite time.

Computable functions

- Computability and algorithms.
- Definition: a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable if it is computable by a Turing machine. Equivalent to Pascal programs which terminate. Alphabet $\{0,1\}$ or Σ finite.
- Finitely many instructions. Unlimited amount of memory. Computation in finite time.
- Decidable problem: $L \subseteq\{0,1\}^{*}$ whose indicator function is computable.

Computable functions

- Computability and algorithms.
- Definition: a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable if it is computable by a Turing machine. Equivalent to Pascal programs which terminate. Alphabet $\{0,1\}$ or Σ finite.
- Finitely many instructions. Unlimited amount of memory. Computation in finite time.
- Decidable problem: $L \subseteq\{0,1\}^{*}$ whose indicator function is computable.
- Decidable problems: words on $\{0,1\}$ with more 0's than 1's. Matrices with coefficients in \mathbb{Q} and maximal rank.

Computable functions

- Computability and algorithms.
- Definition: a function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computable if it is computable by a Turing machine. Equivalent to Pascal programs which terminate. Alphabet $\{0,1\}$ or Σ finite.
- Finitely many instructions. Unlimited amount of memory. Computation in finite time.
- Decidable problem: $L \subseteq\{0,1\}^{*}$ whose indicator function is computable.
- Decidable problems: words on $\{0,1\}$ with more 0 's than 1 's. Matrices with coefficients in \mathbb{Q} and maximal rank.
- Undecidable problems: Halting problem. Post Correspondence Problem.

Algorithms and Games

A Decidable Game Problem

- Games on finite trees [Zermelo, 1913].

A Decidable Game Problem

- Games on finite trees [Zermelo, 1913].
- Example: game of chess. Tree whose nodes are all possible boards. Some leaves are marked with "win". Root is the initial board. White (resp. Black) chooses a child on even (resp. odd) levels.

A Decidable Game Problem

- Games on finite trees [Zermelo, 1913].
- Example: game of chess. Tree whose nodes are all possible boards. Some leaves are marked with "win". Root is the initial board. White (resp. Black) chooses a child on even (resp. odd) levels.
- Decision problem: can player 1 force a "win"?

A Decidable Game Problem

- Games on finite trees [Zermelo, 1913].
- Example: game of chess. Tree whose nodes are all possible boards. Some leaves are marked with "win". Root is the initial board. White (resp. Black) chooses a child on even (resp. odd) levels.
- Decision problem: can player 1 force a "win"?
- Algorithm: dynamic programming.

Algorithms and Games

Games on finite trees

- Algorithm: dynamic programming.

Games on finite trees

- Algorithm: dynamic programming.
- If a node controlled by player 1 has at least one child marked "win" then mark the node "win".

Games on finite trees

- Algorithm: dynamic programming.
- If a node controlled by player 1 has at least one child marked "win" then mark the node "win".
- If a node controlled by player 2 has all children marked "win" then mark the node "win".

Games on finite trees

- Algorithm: dynamic programming.
- If a node controlled by player 1 has at least one child marked "win" then mark the node "win".
- If a node controlled by player 2 has all children marked "win" then mark the node "win".
- Answer yes if the root is marked with "win".

Games on finite trees

- Algorithm: dynamic programming.
- If a node controlled by player 1 has at least one child marked "win" then mark the node "win".
- If a node controlled by player 2 has all children marked "win" then mark the node "win".
- Answer yes if the root is marked with "win".
- Strategy for player 1: choose a son marked "win".

Games on finite trees

- Algorithm: dynamic programming.
- If a node controlled by player 1 has at least one child marked "win" then mark the node "win".
- If a node controlled by player 2 has all children marked "win" then mark the node "win".
- Answer yes if the root is marked with "win".
- Strategy for player 1: choose a son marked "win".
- Games on graphs: the same algorithm works for games on graphs. States $S=S_{1} \cup S_{2}$ controlled by player 1 or 2 .

Algorithms and Games

Solving Simple Stochastic Games

Solving Stochastic Games

Solving Stochastic Games with Signals

Conclusion

Simple Stochastic Games

- Simple Stochastic Games. Games on graphs with stochastic transitions. States $S=S_{2} \cup S_{2} \cup S_{R}$ controlled by player 1, player 2 and nature. Target state $t \in S$.

Simple Stochastic Games

- Simple Stochastic Games. Games on graphs with stochastic transitions. States $S=S_{2} \cup S_{2} \cup S_{R}$ controlled by player 1, player 2 and nature. Target state $t \in S$.
- Example

Simple Stochastic Games

- Simple Stochastic Games. Games on graphs with stochastic transitions. States $S=S_{2} \cup S_{2} \cup S_{R}$ controlled by player 1, player 2 and nature. Target state $t \in S$.
- Example
- Strategy: $\sigma: S^{*} S_{1} \rightarrow \mathcal{D}(S)$.

Simple Stochastic Games

- Simple Stochastic Games. Games on graphs with stochastic transitions. States $S=S_{2} \cup S_{2} \cup S_{R}$ controlled by player 1, player 2 and nature. Target state $t \in S$.
- Example
- Strategy: $\sigma: S^{*} S_{1} \rightarrow \mathcal{D}(S)$.
- Decision problem: does player 1 has a strategy σ for winning with probability $>\frac{1}{2}$?

Linear program for the one-player case

- Only one player: $S_{1}=\emptyset . S=S_{1} \cup S_{R}$.

Linear program for the one-player case

- Only one player: $S_{1}=\emptyset . S=S_{1} \cup S_{R}$.
- Value: of state $s=$ supremum probability $v(s)$ s.t. player 1 can guarantee winning probability $\geq v(s)$.

Linear program for the one-player case

- Only one player: $S_{1}=\emptyset . S=S_{1} \cup S_{R}$.
- Value: of state $s=$ supremum probability $v(s)$ s.t. player 1 can guarantee winning probability $\geq v(s)$.
- Value of target state $=1$.

Linear program for the one-player case

- Only one player: $S_{1}=\emptyset . S=S_{1} \cup S_{R}$.
- Value: of state $s=$ supremum probability $v(s)$ s.t. player 1 can guarantee winning probability $\geq v(s)$.
- Value of target state $=1$.
- Value of $s \in S_{1}=$ maximal value of its successors.

Linear program for the one-player case

- Only one player: $S_{1}=\emptyset . S=S_{1} \cup S_{R}$.
- Value: of state $s=$ supremum probability $v(s)$ s.t. player 1 can guarantee winning probability $\geq v(s)$.
- Value of target state $=1$.
- Value of $s \in S_{1}=$ maximal value of its successors.
- Value of $s \in S_{R}=$ average value of successors.

Linear program for the one-player case

- Only one player: $S_{1}=\emptyset . S=S_{1} \cup S_{R}$.
- Value: of state $s=$ supremum probability $v(s)$ s.t. player 1 can guarantee winning probability $\geq v(s)$.
- Value of target state $=1$.
- Value of $s \in S_{1}=$ maximal value of its successors.
- Value of $s \in S_{R}=$ average value of successors.
- Linear program. Solvable in polynomial time.

Linear program for the one-player case

- Only one player: $S_{1}=\emptyset . S=S_{1} \cup S_{R}$.
- Value: of state $s=$ supremum probability $v(s)$ s.t. player 1 can guarantee winning probability $\geq v(s)$.
- Value of target state $=1$.
- Value of $s \in S_{1}=$ maximal value of its successors.
- Value of $s \in S_{R}=$ average value of successors.
- Linear program. Solvable in polynomial time.
- Minimize $\sum_{s} v(s)$ with constraints:

$$
\begin{aligned}
& s \in S, 0 \leq v(s) \leq 1 \\
& t \text { target, } v(t)=1 \\
& s \in S_{1},(s, u) \in E, \\
& s(s) \geq v(u) \\
& s \in S_{R}, v(s)=\sum_{u \in S} p(s, u) \cdot v(u)
\end{aligned}
$$

Strategy enumeration for the two-player case

- Decision problem: does player 1 has a strategy σ for winning with probability more than $1 / 2$?

Strategy enumeration for the two-player case

- Decision problem: does player 1 has a strategy σ for winning with probability more than $1 / 2$?
- Theorem [Gillette 57, Liggett, Lippman 69]: stationary deterministic strategies $\sigma: S_{1} \rightarrow S$ are enough.

Strategy enumeration for the two-player case

- Decision problem: does player 1 has a strategy σ for winning with probability more than $1 / 2$?
- Theorem [Gillette 57, Liggett, Lippman 69]: stationary deterministic strategies $\sigma: S_{1} \rightarrow S$ are enough.
- Algorithm for two players: enumerate all stationary deterministic strategies $\sigma: S_{1} \rightarrow S$.

Strategy enumeration for the two-player case

- Decision problem: does player 1 has a strategy σ for winning with probability more than $1 / 2$?
- Theorem [Gillette 57, Liggett, Lippman 69]: stationary deterministic strategies $\sigma: S_{1} \rightarrow S$ are enough.
- Algorithm for two players: enumerate all stationary deterministic strategies $\sigma: S_{1} \rightarrow S$.
- Exponentially many strategies $\sigma \in S^{S_{1}}$. Exponential time.

Strategy enumeration for the two-player case

- Decision problem: does player 1 has a strategy σ for winning with probability more than $1 / 2$?
- Theorem [Gillette 57, Liggett, Lippman 69]: stationary deterministic strategies $\sigma: S_{1} \rightarrow S$ are enough.
- Algorithm for two players: enumerate all stationary deterministic strategies $\sigma: S_{1} \rightarrow S$.
- Exponentially many strategies $\sigma \in S^{S_{1}}$. Exponential time.
- "Guess" good strategy $\sigma: S_{1} \rightarrow S$. Check in polynomial time.

Strategy enumeration for the two-player case

- Decision problem: does player 1 has a strategy σ for winning with probability more than $1 / 2$?
- Theorem [Gillette 57, Liggett, Lippman 69]: stationary deterministic strategies $\sigma: S_{1} \rightarrow S$ are enough.
- Algorithm for two players: enumerate all stationary deterministic strategies $\sigma: S_{1} \rightarrow S$.
- Exponentially many strategies $\sigma \in S^{S_{1}}$. Exponential time.
- "Guess" good strategy $\sigma: S_{1} \rightarrow S$. Check in polynomial time.
- Decision problem in NP \cap co-NP. Polynomial?

Strategy enumeration for the two-player case

- Decision problem: does player 1 has a strategy σ for winning with probability more than $1 / 2$?
- Theorem [Gillette 57, Liggett, Lippman 69]: stationary deterministic strategies $\sigma: S_{1} \rightarrow S$ are enough.
- Algorithm for two players: enumerate all stationary deterministic strategies $\sigma: S_{1} \rightarrow S$.
- Exponentially many strategies $\sigma \in S^{S_{1}}$. Exponential time.
- "Guess" good strategy $\sigma: S_{1} \rightarrow S$. Check in polynomial time.
- Decision problem in NP \cap co-NP. Polynomial?
- Polynomial cases. Trees. Fixed number of random vertices.

Strategy enumeration for the two-player case

- Decision problem: does player 1 has a strategy σ for winning with probability more than $1 / 2$?
- Theorem [Gillette 57, Liggett, Lippman 69]: stationary deterministic strategies $\sigma: S_{1} \rightarrow S$ are enough.
- Algorithm for two players: enumerate all stationary deterministic strategies $\sigma: S_{1} \rightarrow S$.
- Exponentially many strategies $\sigma \in S^{S_{1}}$. Exponential time.
- "Guess" good strategy $\sigma: S_{1} \rightarrow S$. Check in polynomial time.
- Decision problem in NP \cap co-NP. Polynomial?
- Polynomial cases. Trees. Fixed number of random vertices.
- Generalization: perfect-information payoff games with stationary deterministic optimal strategies.

Algorithms and Games

Solving Simple Stochastic Games

Solving Stochastic Games

Solving Stochastic Games with Signals

Conclusion

Stochastic Games

- Stochastic Games [Shapley 53]. States S actions I and J. Players play simultaneously. Rewards x_{0}, x_{1}, \ldots player 1 receives $x_{0}+\lambda x_{1}+\lambda x_{2}+\cdots$ from player 1 .

Stochastic Games

- Stochastic Games [Shapley 53]. States S actions I and J. Players play simultaneously. Rewards x_{0}, x_{1}, \ldots player 1 receives $x_{0}+\lambda x_{1}+\lambda x_{2}+\cdots$ from player 1 .
- Example.

Stochastic Games

- Stochastic Games [Shapley 53]. States S actions I and J. Players play simultaneously. Rewards x_{0}, x_{1}, \ldots player 1 receives $x_{0}+\lambda x_{1}+\lambda x_{2}+\cdots$ from player 1 .
- Example.
- Decision problem: does player 1 has a strategy for ensuring payoff >0 ?

Stochastic Games

- Stochastic Games [Shapley 53]. States S actions I and J. Players play simultaneously. Rewards x_{0}, x_{1}, \ldots player 1 receives $x_{0}+\lambda x_{1}+\lambda x_{2}+\cdots$ from player 1 .
- Example.
- Decision problem: does player 1 has a strategy for ensuring payoff >0 ?
- Shapley algorithm. Compute value (optimal payoff) of the game in $0,1,2,3, \ldots$ steps.

Stochastic Games

- Stochastic Games [Shapley 53]. States S actions I and J. Players play simultaneously. Rewards x_{0}, x_{1}, \ldots player 1 receives $x_{0}+\lambda x_{1}+\lambda x_{2}+\cdots$ from player 1 .
- Example.
- Decision problem: does player 1 has a strategy for ensuring payoff >0 ?
- Shapley algorithm. Compute value (optimal payoff) of the game in $0,1,2,3, \ldots$ steps.
- Strategy Improvement Algorithm [Hoffman, Karp, 66] [Rao, Chandrasekaran and Nair, 73]. Compute better and better strategies.

Stochastic Games

- Stochastic Games [Shapley 53]. States S actions I and J. Players play simultaneously. Rewards x_{0}, x_{1}, \ldots player 1 receives $x_{0}+\lambda x_{1}+\lambda x_{2}+\cdots$ from player 1 .
- Example.
- Decision problem: does player 1 has a strategy for ensuring payoff >0 ?
- Shapley algorithm. Compute value (optimal payoff) of the game in $0,1,2,3, \ldots$ steps.
- Strategy Improvement Algorithm [Hoffman, Karp, 66] [Rao, Chandrasekaran and Nair, 73]. Compute better and better strategies.
- Not exact computation: converge to the value but no guarantee on the number of steps for a given precision. May be efficient in practice.

Using first order theory on reals

- Decision problem: does player 1 has a strategy which guarantees payoff >0 ?

Using first order theory on reals

- Decision problem: does player 1 has a strategy which guarantees payoff >0 ?
- Theorem [Shapley 53]: it is enough to consider stationary (but not deterministic) strategies $\sigma: S \rightarrow \mathcal{D}(I)$.

Using first order theory on reals

- Decision problem: does player 1 has a strategy which guarantees payoff >0 ?
- Theorem [Shapley 53]: it is enough to consider stationary (but not deterministic) strategies $\sigma: S \rightarrow \mathcal{D}(I)$.
- First order theory on reals: well-formed formula with rational constants $\frac{a}{b}$, arithmetic operations $*$ and + , variables $x_{1}, x_{2}, \ldots, x_{n}$, comparison \leq, quantifiers \exists and \forall, boolean operators \neg, \wedge, \vee and parentheses (and). $\exists x, 3 x^{6}-4 x^{2}+3=0$.

Using first order theory on reals

- Decision problem: does player 1 has a strategy which guarantees payoff >0 ?
- Theorem [Shapley 53]: it is enough to consider stationary (but not deterministic) strategies $\sigma: S \rightarrow \mathcal{D}(I)$.
- First order theory on reals: well-formed formula with rational constants $\frac{a}{b}$, arithmetic operations $*$ and + , variables $x_{1}, x_{2}, \ldots, x_{n}$, comparison \leq, quantifiers \exists and \forall, boolean operators \neg, \wedge, \vee and parentheses (and). $\exists x, 3 x^{6}-4 x^{2}+3=0$.
- Theorem [Tarski, 51]: quantifier elimination. Truth of first order formula on reals is decidable.

Using first order theory on reals

- Decision problem: does player 1 has a strategy which guarantees payoff >0 ?
- Theorem [Shapley 53]: it is enough to consider stationary (but not deterministic) strategies $\sigma: S \rightarrow \mathcal{D}(I)$.
- First order theory on reals: well-formed formula with rational constants $\frac{a}{b}$, arithmetic operations $*$ and + , variables $x_{1}, x_{2}, \ldots, x_{n}$, comparison \leq, quantifiers \exists and \forall, boolean operators \neg, \wedge, \vee and parentheses (and). $\exists x, 3 x^{6}-4 x^{2}+3=0$.
- Theorem [Tarski, 51]: quantifier elimination. Truth of first order formula on reals is decidable.
- Corollary [Chatterjee, 06] : whether player 1 can guarantee payoff >0 is decidable. Exponential time, polynomial space.

Using first order theory on reals

- Reduction of the decision problem to FO on reals.

Using first order theory on reals

- Reduction of the decision problem to FO on reals.
- Shapley: values val : $S \rightarrow \mathbb{R}$ are the unique fixpoint of a contracting operator $\mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$.

Using first order theory on reals

- Reduction of the decision problem to FO on reals.
- Shapley: values val : $S \rightarrow \mathbb{R}$ are the unique fixpoint of a contracting operator $\mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$.
- Fixed stationary strategies $\sigma: S \rightarrow \mathcal{D}(I)$ and $\tau: S \rightarrow \mathcal{D}(J)$, expected payoff $\operatorname{val}(\sigma, \tau): S \rightarrow \mathbb{R}$ is the unique solution to $\operatorname{val}(s)=r(s)+\lambda \sum_{i, j, u} \sigma(i) \tau(j) p(s, i, j, u) \operatorname{val}(u) .(* *)$

Using first order theory on reals

- Reduction of the decision problem to FO on reals.
- Shapley: values val : $S \rightarrow \mathbb{R}$ are the unique fixpoint of a contracting operator $\mathbb{R}^{S} \rightarrow \mathbb{R}^{S}$.
- Fixed stationary strategies $\sigma: S \rightarrow \mathcal{D}(I)$ and $\tau: S \rightarrow \mathcal{D}(J)$, expected payoff val $(\sigma, \tau): S \rightarrow \mathbb{R}$ is the unique solution to $\operatorname{val}(s)=r(s)+\lambda \sum_{i, j, u} \sigma(i) \tau(j) p(s, i, j, u) \operatorname{val}(u) .(* *)$
- $\exists \sigma: S \rightarrow \mathcal{D}(I), \forall \tau: S \rightarrow \mathcal{D}(J), \exists v: S \rightarrow[0,1],(\forall s \in$ $S,(* *)) \wedge\left(v\left(s_{0}\right)>0\right)$.

Algorithms and Games

Solving Simple Stochastic Games

Solving Stochastic Games

Solving Stochastic Games with Signals

Conclusion

Stochastic Games with Signals

- Players do not observe the current state of the game, they receive signals. Players only observe their signals.

Stochastic Games with Signals

- Players do not observe the current state of the game, they receive signals. Players only observe their signals.
- Example. Actions $\left\{0,1, g_{1}, g_{2}\right\}$ for 1 and $\{0,1\}$ for 2 . Signals $\{\alpha, \beta\}$ for 1 and $\{\cdot\}$ for 2.

Stochastic Games with Signals

- Players do not observe the current state of the game, they receive signals. Players only observe their signals.
- Example. Actions $\left\{0,1, g_{1}, g_{2}\right\}$ for 1 and $\{0,1\}$ for 2 . Signals $\{\alpha, \beta\}$ for 1 and $\{\cdot\}$ for 2.

Strategies

- Actions I and J for player 1 and 2.

Strategies

- Actions I and J for player 1 and 2.
- Signals C and D for player 1 and 2. Contain actions.

Strategies

- Actions I and J for player 1 and 2.
- Signals C and D for player 1 and 2. Contain actions.
- Behavioral strategy for player $1 \sigma: C^{*} \rightarrow \mathcal{D}(I)$.

Strategies

- Actions I and J for player 1 and 2.
- Signals C and D for player 1 and 2. Contain actions.
- Behavioral strategy for player $1 \sigma: C^{*} \rightarrow \mathcal{D}(I)$.
- Decision problem: does player 1 has a strategy σ for reaching t with probability more than $\frac{1}{2}$?

The lonely blind player

- Easy case: the lonely blind player.

The lonely blind player

- Easy case: the lonely blind player.
- One player, blind and alone. For player 1 signals $=$ actions $=$ I. For player 2 actions $=$ singleton.

The lonely blind player

- Easy case: the lonely blind player.
- One player, blind and alone. For player 1 signals $=$ actions $=$ I. For player 2 actions $=$ singleton.
- Deterministic strategy: infinite sequence of actions in $I^{\mathbb{N}}$.

The lonely blind player

- Easy case: the lonely blind player.
- One player, blind and alone. For player 1 signals $=$ actions $=$ I. For player 2 actions $=$ singleton .
- Deterministic strategy: infinite sequence of actions in $I^{\mathbb{N}}$.
- Value $\sup _{u \in I^{\mathbb{N}}} \mathbb{P}_{s}^{u}\left(\exists n \in \mathbb{N}, K_{n} \in T\right)$. Same value if u finite.

The lonely blind player

- Easy case: the lonely blind player.
- One player, blind and alone. For player 1 signals $=$ actions $=$ I. For player 2 actions $=$ singleton .
- Deterministic strategy: infinite sequence of actions in $I^{\mathbb{N}}$.
- Value $\sup _{u \in I^{\mathbb{N}}} \mathbb{P}_{s}^{u}\left(\exists n \in \mathbb{N}, K_{n} \in T\right)$. Same value if u finite.
- Decision problem: does player 1 has a strategy for reaching t with probability $>\frac{1}{2}$.

The lonely blind player

- Easy case: the lonely blind player.
- One player, blind and alone. For player 1 signals $=$ actions $=$ I. For player 2 actions $=$ singleton.
- Deterministic strategy: infinite sequence of actions in $I^{\mathbb{N}}$.
- Value $\sup _{u \in I^{\mathbb{N}}} \mathbb{P}_{s}^{u}\left(\exists n \in \mathbb{N}, K_{n} \in T\right)$. Same value if u finite.
- Decision problem: does player 1 has a strategy for reaching t with probability $>\frac{1}{2}$.
- Enumeration of finite words u ?

Bad news

- Theorem: it is undecidable whether player 1 can win with probability $>1 / 2$ in a lonely blind game.

Bad news

- Theorem: it is undecidable whether player 1 can win with probability $>1 / 2$ in a lonely blind game.
- Unlimited memory, unlimited speed.

Bad news

- Theorem: it is undecidable whether player 1 can win with probability $>1 / 2$ in a lonely blind game.
- Unlimited memory, unlimited speed.
- Proof: reduction to Post correspondence problem. Actions in the game $=$ indices of the PCP instance. Reverse binary encoding, strategy wins with probability $\frac{1}{2} u_{i_{1}} u_{i_{2}} \cdots u_{i_{n}}+\left(1-\frac{1}{2}\right) v_{i_{1}} v_{i_{2}} \cdots v_{i_{n}}$. Strategies win with proba $\frac{1}{2}$ iff $u_{i_{1}} u_{i_{2}} \cdots u_{i_{n}}=v_{i_{1}} v_{i_{2}} \cdots v_{i_{n}}$.

Decidable questions for stochastic games with signals

- Another Decision problem: does player 1 has a strategy for winning with probability exactly 1 ?

Decidable questions for stochastic games with signals

- Another Decision problem: does player 1 has a strategy for winning with probability exactly 1 ?
- Theorem [Bertrand, Genest, G.]: if not, player 2 has a strategy with finite memory, whose size is doubly-exponential in the number of states.

Decidable questions for stochastic games with signals

- Another Decision problem: does player 1 has a strategy for winning with probability exactly 1 ?
- Theorem [Bertrand, Genest, G.]: if not, player 2 has a strategy with finite memory, whose size is doubly-exponential in the number of states.
- Corollary: this decision problem is decidable in doubly-exponential time.

Decidable questions for stochastic games with signals

- Another Decision problem: does player 1 has a strategy for winning with probability exactly 1 ?
- Theorem [Bertrand, Genest, G.]: if not, player 2 has a strategy with finite memory, whose size is doubly-exponential in the number of states.
- Corollary: this decision problem is decidable in doubly-exponential time.
- Remark: the same decision problem is undecidable for stochastic games with Büchi conditions.

Conclusion

- Stochastic games on infinite graphs finitely presented: tree-automata techniques, game reductions, FO.

Conclusion

- Stochastic games on infinite graphs finitely presented: tree-automata techniques, game reductions, FO.
- Algorithm rely on precise description (quantity of memory, finite description) of optimal strategies.

Conclusion

- Stochastic games on infinite graphs finitely presented: tree-automata techniques, game reductions, FO.
- Algorithm rely on precise description (quantity of memory, finite description) of optimal strategies.
- Finding subclasses of stochastic games with signals with decidable decision problems.

Conclusion

- Stochastic games on infinite graphs finitely presented: tree-automata techniques, game reductions, FO.
- Algorithm rely on precise description (quantity of memory, finite description) of optimal strategies.
- Finding subclasses of stochastic games with signals with decidable decision problems.
- Avoid reduction to first order logic.

Conclusion

- Stochastic games on infinite graphs finitely presented: tree-automata techniques, game reductions, FO.
- Algorithm rely on precise description (quantity of memory, finite description) of optimal strategies.
- Finding subclasses of stochastic games with signals with decidable decision problems.
- Avoid reduction to first order logic.
- Finding a polynomial-time algorithm for simple stochastic games.

