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Computable functions

I Computability and algorithms.

I Definition: a function f : {0, 1}∗ → {0, 1}∗ is computable if it
is computable by a Turing machine. Equivalent to Pascal
programs which terminate. Alphabet {0, 1} or Σ finite.

I Finitely many instructions. Unlimited amount of memory.
Computation in finite time.

I Decidable problem: L ⊆ {0, 1}∗ whose indicator function is
computable.

I Decidable problems: words on {0, 1} with more 0’s than 1’s.
Matrices with coefficients in Q and maximal rank.

I Undecidable problems: Halting problem. Post Correspondence
Problem.
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A Decidable Game Problem

I Games on finite trees [Zermelo, 1913].

I Example: game of chess. Tree whose nodes are all possible
boards. Some leaves are marked with ”win”. Root is the
initial board. White (resp. Black) chooses a child on even
(resp. odd) levels.

I Decision problem: can player 1 force a ”win”?

I Algorithm: dynamic programming.
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Games on finite trees

I Algorithm: dynamic programming.

I If a node controlled by player 1 has at least one child marked
”win” then mark the node ”win”.

I If a node controlled by player 2 has all children marked ”win”
then mark the node ”win”.

I Answer yes if the root is marked with ”win”.

I Strategy for player 1: choose a son marked ”win”.

I Games on graphs: the same algorithm works for games on
graphs. States S = S1 ∪ S2 controlled by player 1 or 2.
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Simple Stochastic Games

I Simple Stochastic Games. Games on graphs with stochastic
transitions. States S = S2 ∪ S2 ∪ SR controlled by player 1,
player 2 and nature. Target state t ∈ S .

I Example

I Strategy: σ : S∗S1 → D (S).

I Decision problem: does player 1 has a strategy σ for winning
with probability > 1

2?
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Linear program for the one-player case

I Only one player: S1 = ∅. S = S1 ∪ SR .

I Value: of state s = supremum probability v(s) s.t. player 1
can guarantee winning probability ≥ v(s).

I Value of target state = 1.
I Value of s ∈ S1 = maximal value of its successors.
I Value of s ∈ SR = average value of successors.
I Linear program. Solvable in polynomial time.
I Minimize

∑
s v(s) with constraints:

s ∈ S , 0 ≤ v(s) ≤ 1

t target, v(t) = 1

s ∈ S1, (s, u) ∈ E , v(s) ≥ v(u)

s ∈ SR , v(s) =
∑
u∈S

p(s, u) · v(u)
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Strategy enumeration for the two-player case

I Decision problem: does player 1 has a strategy σ for winning
with probability more than 1/2?

I Theorem [Gillette 57, Liggett, Lippman 69]: stationary
deterministic strategies σ : S1 → S are enough.

I Algorithm for two players: enumerate all stationary
deterministic strategies σ : S1 → S .

I Exponentially many strategies σ ∈ SS1 . Exponential time.

I ”Guess” good strategy σ : S1 → S . Check in polynomial time.

I Decision problem in NP ∩ co-NP. Polynomial?

I Polynomial cases. Trees. Fixed number of random vertices.

I Generalization: perfect-information payoff games with
stationary deterministic optimal strategies.
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Stochastic Games

I Stochastic Games [Shapley 53]. States S actions I and J.
Players play simultaneously. Rewards x0, x1, . . . player 1
receives x0 + λx1 + λx2 + · · · from player 1.

I Example.
I Decision problem: does player 1 has a strategy for ensuring

payoff > 0?
I Shapley algorithm. Compute value (optimal payoff) of the

game in 0, 1, 2, 3, . . . steps.
I Strategy Improvement Algorithm [Hoffman, Karp, 66] [Rao,

Chandrasekaran and Nair, 73]. Compute better and better
strategies.

I Not exact computation: converge to the value but no
guarantee on the number of steps for a given precision. May
be efficient in practice.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Stochastic Games

I Stochastic Games [Shapley 53]. States S actions I and J.
Players play simultaneously. Rewards x0, x1, . . . player 1
receives x0 + λx1 + λx2 + · · · from player 1.

I Example.

I Decision problem: does player 1 has a strategy for ensuring
payoff > 0?

I Shapley algorithm. Compute value (optimal payoff) of the
game in 0, 1, 2, 3, . . . steps.

I Strategy Improvement Algorithm [Hoffman, Karp, 66] [Rao,
Chandrasekaran and Nair, 73]. Compute better and better
strategies.

I Not exact computation: converge to the value but no
guarantee on the number of steps for a given precision. May
be efficient in practice.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Stochastic Games

I Stochastic Games [Shapley 53]. States S actions I and J.
Players play simultaneously. Rewards x0, x1, . . . player 1
receives x0 + λx1 + λx2 + · · · from player 1.

I Example.
I Decision problem: does player 1 has a strategy for ensuring

payoff > 0?

I Shapley algorithm. Compute value (optimal payoff) of the
game in 0, 1, 2, 3, . . . steps.

I Strategy Improvement Algorithm [Hoffman, Karp, 66] [Rao,
Chandrasekaran and Nair, 73]. Compute better and better
strategies.

I Not exact computation: converge to the value but no
guarantee on the number of steps for a given precision. May
be efficient in practice.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Stochastic Games

I Stochastic Games [Shapley 53]. States S actions I and J.
Players play simultaneously. Rewards x0, x1, . . . player 1
receives x0 + λx1 + λx2 + · · · from player 1.

I Example.
I Decision problem: does player 1 has a strategy for ensuring

payoff > 0?
I Shapley algorithm. Compute value (optimal payoff) of the

game in 0, 1, 2, 3, . . . steps.

I Strategy Improvement Algorithm [Hoffman, Karp, 66] [Rao,
Chandrasekaran and Nair, 73]. Compute better and better
strategies.

I Not exact computation: converge to the value but no
guarantee on the number of steps for a given precision. May
be efficient in practice.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Stochastic Games

I Stochastic Games [Shapley 53]. States S actions I and J.
Players play simultaneously. Rewards x0, x1, . . . player 1
receives x0 + λx1 + λx2 + · · · from player 1.

I Example.
I Decision problem: does player 1 has a strategy for ensuring

payoff > 0?
I Shapley algorithm. Compute value (optimal payoff) of the

game in 0, 1, 2, 3, . . . steps.
I Strategy Improvement Algorithm [Hoffman, Karp, 66] [Rao,

Chandrasekaran and Nair, 73]. Compute better and better
strategies.

I Not exact computation: converge to the value but no
guarantee on the number of steps for a given precision. May
be efficient in practice.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Stochastic Games

I Stochastic Games [Shapley 53]. States S actions I and J.
Players play simultaneously. Rewards x0, x1, . . . player 1
receives x0 + λx1 + λx2 + · · · from player 1.

I Example.
I Decision problem: does player 1 has a strategy for ensuring

payoff > 0?
I Shapley algorithm. Compute value (optimal payoff) of the

game in 0, 1, 2, 3, . . . steps.
I Strategy Improvement Algorithm [Hoffman, Karp, 66] [Rao,

Chandrasekaran and Nair, 73]. Compute better and better
strategies.

I Not exact computation: converge to the value but no
guarantee on the number of steps for a given precision. May
be efficient in practice.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Using first order theory on reals

I Decision problem: does player 1 has a strategy which
guarantees payoff > 0?

I Theorem [Shapley 53]: it is enough to consider stationary (but
not deterministic) strategies σ : S → D (I ).

I First order theory on reals: well-formed formula with rational
constants a

b , arithmetic operations ∗ and +, variables
x1, x2, . . . , xn, comparison ≤, quantifiers ∃ and ∀, boolean
operators ¬,∧,∨ and parentheses ( and ).
∃x , 3x6 − 4x2 + 3 = 0.

I Theorem [Tarski, 51]: quantifier elimination. Truth of first
order formula on reals is decidable.

I Corollary [Chatterjee, 06] : whether player 1 can guarantee
payoff > 0 is decidable. Exponential time, polynomial space.
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Conclusion

Using first order theory on reals

I Reduction of the decision problem to FO on reals.

I Shapley: values val : S → R are the unique fixpoint of a
contracting operator RS → RS .

I Fixed stationary strategies σ : S → D (I ) and τ : S → D (J),
expected payoff val(σ, τ) : S → R is the unique solution to
val(s) = r(s) + λ

∑
i ,j ,u σ(i)τ(j)p(s, i , j , u)val(u) . (∗∗)

I ∃σ : S → D (I ) ,∀τ : S → D (J) ,∃v : S → [0, 1], (∀s ∈
S , (∗∗)) ∧ (v(s0) > 0).
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Stochastic Games with Signals

I Players do not observe the current state of the game, they
receive signals. Players only observe their signals.

I Example. Actions {0, 1, g1, g2} for 1 and {0, 1} for 2. Signals
{α, β} for 1 and {·} for 2.

I
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Conclusion

Strategies

I Actions I and J for player 1 and 2.

I Signals C and D for player 1 and 2. Contain actions.

I Behavioral strategy for player 1 σ : C ∗ → D (I ).

I Decision problem: does player 1 has a strategy σ for reaching
t with probability more than 1

2?
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The lonely blind player

I Easy case: the lonely blind player.

I One player, blind and alone. For player 1 signals = actions =
I . For player 2 actions = singleton.

I Deterministic strategy: infinite sequence of actions in IN.

I Value supu∈IN Pu
s (∃n ∈ N,Kn ∈ T ). Same value if u finite.

I Decision problem: does player 1 has a strategy for reaching t
with probability > 1

2 .

I Enumeration of finite words u?
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Bad news

I Theorem: it is undecidable whether player 1 can win with
probability > 1/2 in a lonely blind game.

I Unlimited memory, unlimited speed.

I Proof: reduction to Post correspondence problem. Actions in
the game = indices of the PCP instance. Reverse binary
encoding, strategy wins with probability
1
2ui1ui2 · · · uin + (1− 1

2)vi1vi2 · · · vin . Strategies win with proba
1
2 iff ui1ui2 · · · uin = vi1vi2 · · · vin .
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Conclusion

Decidable questions for stochastic games with signals

I Another Decision problem: does player 1 has a strategy for
winning with probability exactly 1?

I Theorem [Bertrand, Genest, G.]: if not, player 2 has a
strategy with finite memory, whose size is doubly-exponential
in the number of states.

I Corollary: this decision problem is decidable in
doubly-exponential time.

I Remark: the same decision problem is undecidable for
stochastic games with Büchi conditions.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Decidable questions for stochastic games with signals

I Another Decision problem: does player 1 has a strategy for
winning with probability exactly 1?

I Theorem [Bertrand, Genest, G.]: if not, player 2 has a
strategy with finite memory, whose size is doubly-exponential
in the number of states.

I Corollary: this decision problem is decidable in
doubly-exponential time.

I Remark: the same decision problem is undecidable for
stochastic games with Büchi conditions.
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Conclusion

I Stochastic games on infinite graphs finitely presented:
tree-automata techniques, game reductions, FO.

I Algorithm rely on precise description (quantity of memory,
finite description) of optimal strategies.

I Finding subclasses of stochastic games with signals with
decidable decision problems.

I Avoid reduction to first order logic.

I Finding a polynomial-time algorithm for simple stochastic
games.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Conclusion

I Stochastic games on infinite graphs finitely presented:
tree-automata techniques, game reductions, FO.

I Algorithm rely on precise description (quantity of memory,
finite description) of optimal strategies.

I Finding subclasses of stochastic games with signals with
decidable decision problems.

I Avoid reduction to first order logic.

I Finding a polynomial-time algorithm for simple stochastic
games.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Conclusion

I Stochastic games on infinite graphs finitely presented:
tree-automata techniques, game reductions, FO.

I Algorithm rely on precise description (quantity of memory,
finite description) of optimal strategies.

I Finding subclasses of stochastic games with signals with
decidable decision problems.

I Avoid reduction to first order logic.

I Finding a polynomial-time algorithm for simple stochastic
games.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Conclusion

I Stochastic games on infinite graphs finitely presented:
tree-automata techniques, game reductions, FO.

I Algorithm rely on precise description (quantity of memory,
finite description) of optimal strategies.

I Finding subclasses of stochastic games with signals with
decidable decision problems.

I Avoid reduction to first order logic.

I Finding a polynomial-time algorithm for simple stochastic
games.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games



Algorithms and Games
Solving Simple Stochastic Games

Solving Stochastic Games
Solving Stochastic Games with Signals

Conclusion

Conclusion

I Stochastic games on infinite graphs finitely presented:
tree-automata techniques, game reductions, FO.

I Algorithm rely on precise description (quantity of memory,
finite description) of optimal strategies.

I Finding subclasses of stochastic games with signals with
decidable decision problems.

I Avoid reduction to first order logic.

I Finding a polynomial-time algorithm for simple stochastic
games.

Hugo Gimbert, CNRS, LaBRI, Bordeaux Algorithms for Stochastic Games


	Algorithms and Games
	Solving Simple Stochastic Games
	Solving Stochastic Games
	Solving Stochastic Games with Signals
	Conclusion

